ICE | The Israel Chemist and Chemical Engineer | Issue 8

11 The Israel Chemist and Chemical Engineer Issue 8 · November 2021 · Kislev 5782 Scientific Article 5. Conclusion & outlook Laser-based printing from liquids appear promising for various applications. It is simple, uses materials that allow easy handling and efficient recycling, and allows versatility, high resolution, and printing of arbitrary structures on various substrates. Traditional methods for fabrication such as inkjet printing, selective laser sintering (SLS) and lithography may be combined with laser-based methods. Laser-guided printing offers a number of advantages, and may complement or replace top-down approaches. Printing of micro-structures with single/multi-photon polymerization is highly developed and commercially mature. However, it is limited to polymers; for other materials, appropriate methods are needed. Commercialization requires scaling up, e.g. printing in parallel with separate beams, or increasing velocity. Limits of printing velocity and feature size should be studied theoretically and experimentally. Methods currently limited to 2D assemblies require additional research to allow 3D microstructures. Micro-sized structures are envisioned not only within macro-sized objects, but also as standalone objects, e.g. for medical usage. For such micro-objects (e.g., devices and robots) materials need to be assembled with different functionalities. Microprinting of materials with “smart” properties (e.g. shape-memory polymers) and tailored composites are essential. By comparing the various mechanisms, this overview will hopefully illuminate the different methods and lead to future developments. References 1. B. Elder, R. Neupane, E. Tokita, U. Ghosh, S. Hales and Y. L. Kong, Adv. Mater., 2020, 32, 1907142. 2. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen and D. Hui, Compos. B Engin., 2018, 143, 172–196. 3. L. Hirt, A. Reiser, R. Spolenak and T. Zambelli, Adv. Mater., 2017, 29, 1604211. 4. N. Armon, E. Greenberg, E. Edri, O. Nagler-Avramovitz, Y. Elias and H. Shpaisman, Adv. Funct. Mater., 2021, 31, 2008547. 5. E. Edri, N. Armon, E. Greenberg, S. Moshe-Tsurel, D. Lubotzky, T. Salzillo, I. Perelshtein, M. Tkachev, O. Girshevitz and H. Shpaisman, ACS Appl. Mater. Interfaces, 2021, 13, 36416–36425. 6. Y. Xie and C. Zhao, Nanoscale, 2017, 9, 6622–6631. 7. N. Armon, E. Greenberg, M. Layani, Y. S. Rosen, S. Magdassi and H. Shpaisman, ACS Appl. Mater. & Interfaces, 2017, 9, 44214–44221. 8. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki and M. Haga, Langmuir, 2011, 27, 8605–8610. 9. I. Jacob, E. Edri, E. Lasnoy, S. Piperno and H. Shpaisman, Soft Matter, 2017, 13, 706–710. 10. C. Hosokawa, H. Yoshikawa and H. Masuhara, Phy. Rev. E, 2005, 72, 21408. 11. E. Lasnoy, O. Wagner, E. Edri and H. Shpaisman, Lab Chip, 2019, 19, 3543–3551. 12. D. G. Grier, Nature, 2003, 424, 810–816. 13. Y. Roichman and D. G. Grier, Complex Light and Optical Forces. Vol. 6483. International Society for Optics and Photonics, 2007, pp. 64830F-64830F–5. 14. S.-H. Lee and D. G. Grier, Opt. Express, 2007, 15, 1505–1512. 15. H. Wang, S. Liu, Y.-L. Zhang, J.-N. Wang, L. Wang, H. Xia, Q.-D. Chen, H. Ding and H.-B. Sun, Sci. Technol. Adv. Mater., 2015, 16, 024805. 16. A. Lachish-Zalait, D. Zbaida, E. Klein and M. Elbaum, Adv. Funct. Mater., 2001, 11, 218–223. 17. E. Greenberg, N. Armon, O. Kapon, M. Ben-Ishai and H. Shpaisman, Adv. Mater. Interfaces, 2019, 1900541. 18. S. Fujii, R. Fukano, Y. Hayami, H. Ozawa, E. Muneyuki, N. Kitamura and M. Haga, ACS Appl. Mater. Interfaces, 2017, 9, 8413–8419.