AsiaChem | Chemistry in Japan | December 2021 Volume 2 Issue 1

www.asiachem.news December 2021 | 25 References 1. Production, use, and fate of all plastics ever made. R. Geyer, J. R. Jambeck, and K. Lavender Law, Sci. Adv. 2017, 3, e1700782. 2. Synthesis of a Novel Amphiphilic Porphyrin carrying Water-soluble Polyether Side Chains of Controlled Chain Length. Formation of a Cofacial Molecular Assembly in Aqueous Media. T. Aida, A. Takemura, M. Fuse, and S. Inoue, J. Chem. Soc., Chem. Commun. 1988, 391–393. 3. Use of Hydrogen Bonds To Control Molecular Aggregation. Extensive, Self-Complementary Arrays of Donors and Acceptors. Y. Ducharme and J. D. Wuest, J. Org. Chem. 1988, 53, 5787–5789. 4. Design of Organic Structures in the Solid State: Hydrogen-Bonded Molecular “Tapes”. J. A. Zerkowski, C. T. Seto, D. A. Wierda, and G. M. Whitesides, J. Am. Chem. Soc. 1990, 112, 9025–9026. 5. Molecular Recognition directed Self-assembly of Ordered Supramolecular Strands by Cocrystallization of Complementary Molecular Components. J.-M. Lehn, M. Mascal, A. DeCian, and J. Fischer, J. Chem. Soc., Chem. Commun. 1990, 479–481. 6. (a) Molecular Recognition Directed Self-Assembly of Supramolecular Liquid Crystalline Polymers from Complementary Chiral Components. C. Fouquey, J.-M. Lehn, and A.-M. Levelut, Adv. Mater. 1990, 2, 254–257. (b) Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self- assembly from complementary chiral components. T. Gulik-Krzywicki, C. Fouquey, and J.-M. Lehn, Proc. Natl. Acad. Sci. USA 1993, 163–167. 7. Self-assembling organic nanotubes based on a cyclic peptide architecture. M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, and N. Khazanovich, Nature 1993, 366, 324–327. 8. Molecular-Recognition-Directed Self-Assembly of Supramolecular Polymers. V. Percec, J. Heck, G. Johansson, D. Tomazos, M. Kawasumi, and G. Ungar, J. Macromol. Sci. - Pure Appl. Chem. 1994, 31, 1031–1070. 9. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. Ky Hirschberg, R. F. M. Lange, J. K. L. Lowe, and E. W. Meijer, Science 1997, 278, 1601–1604. 10. Homochiral Supramolecular Polymerization of an “S”-Shaped Chiral Monomer: Translation of Optical Purity into Molecular Weight Distribution. Y. Ishida and T. Aida, J. Am. Chem. Soc. 2002, 124, 14017–14019. 11. Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube. J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida, Science 2004, 304, 1481–1483. 12. Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers. Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M. Taniguchi, T. Kawai, and T. Aida, Science 2006, 314, 1761–1764. 13. Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments. W. Zhang, W. Jin, T. Fukushima, A. Saeki, S. Seki, and T. Aida, Science 2011, 334, 340–343. 14. (a) Supramolecular Polymerization. T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, and E. W. Meijer, Chem. Rev. 2009, 109, 5687–5754. (b) Functional Supramolecular Polymers. T. Aida, E. W. Meijer, and S. I. Stupp, Science 2012, 335, 813–817. (c) Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. L. Yang, X. Tan, Z. Wang, and X. Zhang, Chem. Rev. 2015, 115, 7196–7239. (d) Supramolecular polymerization through kinetic pathway control and living chain growth. M. Wehner and F. Würthner, Nat. Rev. Chem. 2020, 4, 38–53. (e) Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. P. K. Hashim, J. Bergueiro, E. W. Meijer, and T. Aida, Prog. Polym. Sci. 2020, 105, 101250– 101268. (f) Supramolecular Polymers – we’ve Come Full Circle. T. Aida and E.W. Meijer, Isr. J. Chem. 2020, 60, 33–47. 15. Über Polymerisation. H. Staudinger, Ber. Dtsch. Chem. Ges. 1920, 53, 1073–1085. 16. (a) Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. W. Jin, T. Fukushima, M. Niki, A. Kosaka, N. Ishii, and T. Aida, Proc. Natl. Acad. Sci. USA 2005, 102, 10801–10806. (b) Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction. Y. Yamamoto, G. Zhang, W. Jin, T. Fukushima, N. Ishii, A. Saeki, S. Seki, S. Tagawa, T. Minari, K. Tsukagoshi, and T. Aida, Proc. Nat. Acad. Sci. USA 2009, 106, 21051–21056. 17. Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces. T. Fukino, H. Joo, Yuki Hisada, M. Obana H. Yamagishi, T. Hikima, M. Takata, N. Fujita, and T. Aida, Science 2014, 344, 499–504. 18. A rational strategy for the realization of chain-growth supramolecular polymerization. J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, and T. Aida, Science 2015, 347, 646–651. 19. Solvent-free autocatalytic supramolecular polymerization. Z. Chen, Y. Suzuki, A. Imayoshi, X. Ji, K. V. Rao, Y. Omata, D. Miyajima, E. Sato, A. Nihonyanagi, and T. Aida, Nat. Mater. 2021, in press. 20. Thermally bisignate supramolecular polymerization. K. V. Rao, D. Miyajima, A. Nihonyanagi, and T. Aida, Nat. Chem. 2017, 9, 1133–1139. 21. (a) Molecular Ordering of Organic Molten Salts Triggered by Single–Walled Carbon Nanotubes. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, and T. Aida, Science 2003, 300, 2072–2074. (b) Ultrahighthroughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. M. Matsumoto, Y. Saito, C. Park, T. Fukushima, and T. Aida, Nat. Chem. 2015, 7, 730–736. 22. (a) A Rubberlike Stretchable Active Matrix Using Elastic Conductors. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science 2008, 321, 1468–1472. (b) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 2009, 8, 494–499. 23. Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel. T. Fukushima, K. Asaka, A. Kosaka, and T. Aida, Angew. Chem. Int. Ed. 2005, 44, 2410–2413. 24. (a) High-water-content mouldable hydrogel by mixing clay and a dendritic molecular binder. Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, and T. Aida, Nature 2010, 463, 339–343. (b) An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima, M. Takata, and T. Aida, Nature 2015, 517, 68–72. (c) Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Y. S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, and T. Aida, Nat. Mater. 2015, 14, 1002–1007. 25. Biomolecular robotics for chemomechanically driven guest delivery fueled by intracellular ATP. S. Biswas, K. Kinbara, T. Niwa, H. Taguchi, N. Ishii, S. Watanabe, K. Miyata, K. Kataoka, and T. Aida, Nat. Chem. 2013, 5, 613–620. 26. (a) Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups Within Core–Shell Architecture. D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, and T. Aida, Science 2012, 336, 209–213. (b) Nematic-to-columnar mesophase transition by in situ supramolecular polymerization. K. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, and T. Aida, Science 2019, 363, 161–165. 27. (a) Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Y. Yanagisawa, Y. Nan, K. Okuro, and T. Aida, Science 2018, 359, 72–76. (b) Mechanically Robust, Self-Healable Polymers Usable under High Humidity: Humidity-Tolerant Noncovalent Cross-Linking Strategy. Y. Fujisawa, A. Asano, Y. Itoh, and T. Aida, J. Am. Chem. Soc. 2021, 143, 15279–15285. their cross-sectional ends via H-bonding and dipole–dipole interactions, thereby enabling reductive cyclotetramerization of PNC4 into PCC4, the monomer for supramolecular polymerization, in an autocatalytic manner. The newly formed PCC4 monomer remains at the cross-sectional ends and likewise autocatalyzes the next cycle of reductive cyclotetramerization of PNC4 into PCC4. The repetition of these elementary steps results in elongation of the crystalline fibers of supramolecularly polymerized PCC4. Terminal coupling of the crystalline fibers, which would lead to a decrease in the total cross-sectional area for autocatalysis, barely took place in SF-ASP, likely due to their very sluggish diffusion in the hot melt of PNC4 under solvent-free conditions. When metal oleates are present, SF-ASP produces metallophthalocyanines as crystalline fibers again in exceptionally high yields, which grow in both directions without terminal coupling until the phthalonitrile precursors are completely consumed. Taking advantage of the living nature of this supramolecular polymerization, multistep SF-ASP without/with metal oleates results in the precision synthesis of ABA and ABCBA types of multi-block supramolecular copolymers. The finding of all of these qualities of SF-ASP that occur only under environmentally friendly solvent-free conditions was beyond our expectations. This demonstrates the significant potential of supramolecular polymerization to bring about change in chemical manufacturing processes and in the utilization of polymeric materials for the realization of a sustainable society. We hope that this report will encourage polymer chemists to focus much needed attention on the solid-state properties of supramolecular polymers. Certainly, to have a chance at finding widespread practical use and replacing traditional polymers, supramolecular polymer materials showing mechanical robustness under a range of usage conditions must be realized. Although dynamicity and mechanical robustness of polymeric materials have been considered mutually exclusive, by an advanced molecular design, one might sweep away this preconception, and make mechanically robust polymers that are recyclable or structurally reorganizable at the monomer level under particular conditions. We envision a world in which society overcomes its chronic dependency on traditional plastics, through the gradual adoption of supramolecular polymers and other green materials. The intrinsically reversible nature of noncovalent bonds affords supramolecular polymers the potential for self-healing, reconfigurability and complete recycling, enabling materials whose lifespan can be extended and whose properties can be enhanced in subsequent life cycles. ◆

RkJQdWJsaXNoZXIy NDU2MA==