AsiaChem | Chemistry in Japan | December 2021 Volume 2 Issue 1

www.asiachem.news December 2021 | 31 intermediates via one catalytic cycle and their successful integration into the product-forming cycle, which operates using another metal. Synthetic transformations based on cooperative double activation catalysis have also been briefly surveyed. The combination of common Lewis acids and late transition metal catalysts is powerful, particularly for the functionalization of otherwise less-reactive C–H and C–C bonds. Steric repulsion or tethering between the transition metal and Lewis acid have also been utilized to control the site-selectivity of C–H functionalization. Cooperative catalysis can also incorporate organocatalysis to generate transient substrates bearing a directing group to coordinate to the metal complex, enabling selective bond activation/formation processes at the proximal site. Given the large variety of possible combinations of catalysis systems based on different principles that have been developed in organic synthesis during the last half century, cooperative catalysis should be a useful and promising strategy for synthetic chemists to design novel and efficient organic reactions, which are greatly needed to establish sustainable chemical processes ◆. Scheme 10: Cooperative double activation Rh/organo catalysis for C–H and C–C functionalization. References 1. Allen, A. E. and MacMillan, D. W. C. (2012). Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658. 2. Pye, D. R. and Mankad, N. P. (2017). Bimetallic catalysis for C–C and C–X coupling reactions. Chem. Sci. 8, 1705–1718. 3. Sonogashira, K., Tohda, Y. and Hagihara, N. (1975). A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470. 4. Gooßen, L. J., Deng, G. and Levy, L. M. (2006). Synthesis of biaryls via catalytic decarboxylative coupling. Science 313, 662–664. 5. Semba, K. and Nakao, Y. (2014). Arylboration of alkenes by cooperative palladium/copper catalysis. J. Am. Chem. Soc. 136, 7567–7570. 6. Sawamura, M., Sudoh, M. and Ito, Y. (1996). An enantioselective two-component catalyst system: Rh–Pd-catalyzed allylic alkylation of activated nitriles. J. Am. Chem. Soc. 118, 3309–3310. 7. Rogge, T., Kaplaneris, N., Chatani, N., Kim, J., Chang, S., Punji, B., Schafer, L. L., Musaev, D. G., Wencel-Delord, J., Roberts, C. A., Sarpong, R., Wilson, Z. E., Brimble, M. A., Johansson, M. J. and Ackermann, L. (2021). C–H activation. Nat. Rev. Methods Primers 1, 43. 8. Ko, S., Kang, B., Chang, S. (2005). Cooperative catalysis by Ru and Pd for the direct coupling of a chelating aldehyde with iodoarenes or organostannanes. Angew. Chem. Int. Ed. 44, 455–457. 9. Goldfogel, M. J., Huang, L. and Weix, D. J. (2020). Cross-electrophile coupling: principles and new reactions. in Nickel Catalysis in Organic Synthesis (ed. Ogoshi, S.) 183–222 (WileyVCH). 10. Ackerman, L. K. G., Lovell, M. M. and Weix, D. J. (2015). Multimetallic catalysed crosscoupling of aryl bromides with aryl triflates. Nature 524, 454–457. 11. Afewerki, S. and Córdova, A. (2016). Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem. Rev. 116, 13512–13570. 12. Jellerichs, B. G., Kong, J.-R. and Krische, M. J. (2003). Catalytic enone cycloallylation via concomitant activation of latent nucleophilic and electrophilic partners: merging organic and transition metal catalysis. J. Am. Chem. Soc. 125, 7758–7759. 13. Ibrahem, I. and Córdova, A. (2006). Direct catalytic intermolecular α-allylic alkylation of aldehydes by combination of transition-metal and organocatalysis. Angew. Chem. Int. Ed. 45, 1952–1956. 14. Yasuda, S., Ishii, T., Takemoto, S., Haruki, H. and Ohmiya, H. (2018). Synergistic N-heterocyclic carbene/palladium-catalyzed reactions of aldehyde acyl anions with either diarylmethyl or allylic carbonates. Angew. Chem. Int. Ed. 57, 2938–2942. 15. Romero, N. A. and Nicewicz, D. A. (2016). Organic photoredox catalysis. Chem. Rev. 116, 10075–10166. 16. Tellis, J. C., Primer, D. N. and Molander, G. A. (2014). Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436. 17. Zuo, Z., Ahneman, D. T., Chu, L., Terrett, J. A., Doyle, A. G. and MacMillan, D. W. C. (2014). Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440. 18. Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W. and MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052. 19. Getzler, Y. D. Y. L., Mahadevan, V., Lobkovsky, E. B. and Coates, G. W. (2002). Synthesis of β-lactones: A highly active and selective catalyst for epoxide carbonylation. J. Am. Chem. Soc. 124, 1174–1175. 20. Tsuchimoto, T., Kamiyama, S., Negoro, R., Shirakawa, E. and Kawakami, Y. (2003). Palladium-catalyzed dimerization of vinylarenes using indium triflate as an effective cocatalyst. Chem. Commun. 852–853. 21. Nakao, Y., Kanyiva, K. S. and Hiyama, T. (2008). A strategy for C–H activation of pyridines: Direct C-2 selective alkenylation of pyridines by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 130, 2448–2449. 22. Nakao, Y., Yamada, Y., Kashihara, N. and Hiyama, T. (2010). Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 132, 13666–13668. 23. Okumura, S., Tang, S., Saito, T., Semba, K., Sakaki, S. and Nakao, Y. (2016). Para-selective alkylation of benzamides and aromatic ketones by cooperative nickel/aluminum catalysis. J. Am. Chem. Soc. 138, 14699–14704. 24. Murai, S., Kakiuchi. F., Sekine, S., Tanaka, Y., Kamatani, A., Sonoda, M. and Chatani, N. (1993). Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature 366, 529–531. 25. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. and Hartwig, J. F. (2010). C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931. 26. Kuroda, Y. and Nakao, Y. (2019). Catalyst-enabled site-selectivity in the iridium-catalyzed C–H borylation of arenes. Chem. Lett. 48, 1092–1100. 27. Yang, L., Semba, K. and Nakao, Y. (2017). Para-selective C–H borylation of (hetero)arenes by cooperative iridium/aluminum catalysis. Angew. Chem. Int. Ed. 56, 4853–4857. 28. Yang, L., Uemura, N. and Nakao, Y. (2019). Meta-selective C–H borylation of benzamides and pyridines by an iridium–Lewis acid bifunctional catalyst. J. Am. Chem. Soc. 141, 7972–7979. 29. Dong, G. (ed) (2014). C–C bond activation (Springer, Berlin). 30. Nakao, Y. (2021). Metal-mediated C–CN bond activation in organic synthesis. Chem. Rev. 121, 327–344. 31. Nakao, Y. (2012). Nickel/Lewis acid-catalyzed carbocyanation of unsaturated compounds. Bull. Chem. Soc. Jpn. 85, 731–745 32. Nakao, Y., Yada, A., Ebata, S. and Hiyama, T. (2007). A dramatic effect of Lewis acid catalyst on nickel-catalyzed carbocyanation of alkynes. J. Am. Chem. Soc. 129, 2428–2429. 33. Kim, D.-S., Park, W.-J. and Jun, C.-H. (2017). Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015. 34. Jun, C.-H., Lee, H. and Hong, J.-B. (1997). Chelation-assisted intermolecular hydroacylation: direct synthesis of ketone from aldehyde and 1-alkene. J. Org. Chem. 62, 1200–1201. 35. Mo, F. and Dong, G. (2014). Regioselective ketone α-alkylation with simple olefins via dual activation. Science 345, 68–72. 36. Jun, C.-H. and Lee, H. (1999). Catalytic carbon–carbon bond activation of unstrained ketone by soluble transition-metal complex. J. Am. Chem. Soc. 121, 880–881. 37. Xia, Y., Lu, G., Liu, P. and Dong, G. (2016). Catalytic activation of carbon–carbon bonds in cyclopentanones. Nature 539, 546–550.

RkJQdWJsaXNoZXIy NDU2MA==