AsiaChem | Chemistry in Japan | December 2021 Volume 2 Issue 1

www.asiachem.news December 2021 | 41 (SA-CASSCF) method (Figure 13). Although the SA-CASSCF method entails a large computational cost, it is able to obtain the electronic states and energies of the multiconfigurational singlet diradicals with an open-shell nature more precisely. As shown in Figure 13, the activation energy of the adiabatic bond-homolysis process to give the puckered-type intermediate 33* from the electronically excited state trans-32* was found to be very small, approximately 2 kcal mol–1, and the two fluorescence peaks observed in the emission spectrum of trans-32 were from trans-32* and 33*. The activation energy from 33* to 6* is as high as 10 kcal mol–1, which is consistent with the experimental observation that the emission from 6* (~650 nm) was not observed. A similar adiabatic excited-state cleavage reaction was performed for trans38*, and the energy barrier for the bond homolytic cleavage process was as high as approximately 6 kcal mol–1, consistent with the fact that only phenyl-group-derived fluorescence was observed from trans-38*. Thus, the existence of a third minimal-energy structure in the bond homolysis process of trans-32 even in the electronically excited state was revealed. Conclusion In this article, we elucidate the kinetic stabilization of localized singlet diradicals entailed in the bond homolysis process to extend their lifetime and investigate their chemical properties. By thoroughly studying the bond homolysis process, which is a fundamental chemical reaction, we propose novel bonding styles and new reaction intermediates. We hope that more research will be conducted using these new chemical concepts in the future. Finally, since we are often asked about the difference between “diradical” and “biradical,” we will explain the definition of “diradical” used in this paper. According to the IUPAC Gold Book, a diradical is a chemical species with two strongly interacting radicals in a molecule and two spin multiplicities, a singlet (↑↓) and a triplet (↑↑); by contrast, when two radicals are far apart in a molecule, the spin interaction is small, and they are judged to be two doublet species (2 × ↑), they are called biradicals. We would like to express our sincere gratitude to the students who have graduated from the Graduate School of Engineering, Osaka University, and the Graduate School of Science, Hiroshima University, who had devoted themselves to the research summarized herein. Part of this work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), and the Japan Science and Technology Agency (JST). ◆ References 1. Chambers, T. S.; Kistiakowsky, G. B. Kinetics of the Thermal Isomerization of Cyclopropane. Journal of the American Chemical Society 1934, 56 (2), 399–405. https://doi.org/10.1021/ja01317a036. 2. Hoffmann, R. Trimethylene and the Addition of Methylene to Ethylene. Journal of the American Chemical Society 1968, 90 (6), 1475–1485. https://doi.org/10.1021/ja01008a016. 3. Hoffmann, R. Interaction of Orbitals through Space and through Bonds. Accounts of Chemical Research 1971, 4 (1), 1–9. https://doi.org/10.1021/ar50037a001. 4. Buchwalter, S. L.; Closs, G. L. Electron Spin Resonance Study of Matrix Isolated 1,3-Cyclopentadiyl, a Localized 1,3-Carbon Biradical. Journal of the American Chemical Society 1975, 97 (13), 3857–3858. https://doi.org/10.1021/ja00846a073. 5. Brandon, R. W.; Closs, G. L.; Davoust, C. E.; Hutchison, C. A.; Kohler, B. E.; Silbey, R. Electron Paramagnetic Resonance Spectra of the Ground-State Triplet Diphenylmethylene and Fluorenylidene Molecules in Single Crystals. The Journal of Chemical Physics 1965, 43 (6), 2006–2016. https://doi.org/10.1063/1.1697067. 6. Zeng, Y.; Feng, H.; Xie, Y.; Schaefer, H. F. Tuning Effects for Some Cyclic Aromatic Carbenes Bearing Remote Amino Groups. Journal of Organic Chemistry 2014, 79 (7), 2926–2933. https://doi.org/10.1021/jo402841h. 7. Adam, W.; Platsch, H.; Wirz, J. Oxygen Trapping and Thermochemistry of a Hydrocarbon Singlet Biradical: 1,3-Diphenylcyclopentane-1,3-Diyl. Journal of the American Chemical Society 1989, 111 (17), 6896–6898. https://doi.org/10.1021/ja00199a091. 8. Jain, R.; Sponsler, M. B.; Corns, F. D.; Dougherty, D. A. Cyclobutanediyls: A New Class of Localized Biradicals. Synthesis and Epr Spectroscopy. Journal of the American Chemical Society 1988, 110 (5), 1356–1366. https://doi.org/10.1021/ja00213a006. 9. (Coms, F. D.; Dougherty, D. A. 1,3-Diphenyl-1,3-Cyclopentanediyl: A Remarkably Stable Localized Biradical. Tetrahedron Letters 1988, 29 (31), 3753–3756. https://doi.org/10.1016/S0040-4039(00)82106-1. 10. Getty, S. J.; Hrovat, D. A.; Borden, W. T. Ab Initio Calculations on the Stereomutation of 1, 1-Difluorocyclopropane. Prediction of a Substantial Preference for Coupled Disrotation of the Methylene Groups. Journal of the American Chemical Society 1994, 116 (4), 1521–1527. https://doi.org/10.1021/ja00083a041. 11. Abe, M.; Adam, W.; Nau, W. M. Photochemical Generation and Methanol Trapping of Localized 1,3 and 1,4 Singlet Diradicals Derived from a Spiroepoxy-Substituted Cylcopentane 1,3- Diyl. Journal of the American Chemical Society 1998, 120 (44), 11304–11310. https://doi.org/10.1021/ja9822761. 12. Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X. Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals: The Exceedingly Long-Lived 2,2-Diethoxy-1,3Diphenylcyclopentane- 1,3-Diyl. Journal of the American Chemical Society 2000, 122 (9), 2019–2026. https://doi.org/10.1021/ja992507j. 13. Abe, M.; Adam, W.; Hara, M.; Hattori, M.; Majima, T.; Nojima, M.; Tachibana, K.; Tojo, S. On the Electronic Character of Localized Singlet 2,2-Dimethoxycyclopentane-1,3-Diyl Diradicals: Substituent Effects on the Lifetime. Journal of the American Chemical Society 2002, 124 (23), 6540–6541. https://doi.org/10.1021/ja026301l. 14. Borden, W. T. Effects of Electron Donation into C-F Σ* Orbitals: Explanations, Predictions and Experimental Tests. Chemical Communications 1998, No. 18, 1919–1925. https://doi.org/10.1039/a803750g. 15. Abe, M.; Kawanami, S.; Ishihara, C.; Nojima, M. 2-Silyl Group Effect on the Reactivity of Cyclopentane-1,3-Diyls. Intramolecular Ring-Closure versus Silyl Migration. Journal of Organic Chemistry 2004, 69 (17), 5622–5626. https://doi.org/10.1021/jo049580z. 16. (Abe, M.; Adam, W.; Borden, W. T.; Hattori, M.; Hrovat, D. A.; Nojima, M.; Nozaki, K.; Wirz, J. Effects of Spiroconjugation on the Calculated Singlet-Triplet Energy Gap in 2,2-Dialkoxycyclopentane-1,3-Diyls and on the Experimental Electronic Absorption Spectra of Singlet 1,3-Diphenyl Derivatives. Assignment of the Lowest-Energy Electronic Transition. Journal of the American Chemical Society 2004, 126 (2), 574–582. https://doi.org/10.1021/ja038305b. 17. Wang, Z.; Yadav, P.; Abe, M. Long-Lived Localised Singlet Diradicaloids with Carbon–Carbon π-Single Bonding (C–π–C). Chemical Communications 2021, 57, 11301–11309. https://doi.org/10.1039/d1cc04581d. 18. Abe, M.; Ye, J.; Mishima, M. The Chemistry of Localized Singlet 1,3-Diradicals (Biradicals): From Putative Intermediates to Persistent Species and Unusual Molecules with a π-Single Bonded Character. Chemical Society Reviews 2012, 41 (10), 3808–3820. https://doi.org/10.1039/c2cs00005a. 19. Abe, M.; Akisaka, R. Is π-Single Bonding (CπC) Possible? A Challenge in Organic Chemistry. Chemistry Letters 2017, 46 (11), 1586–1592. https://doi.org/10.1246/cl.170711. 20. (Kyushin, S.; Kurosaki, Y.; Otsuka, K.; Imai, H.; Ishida, S.; Kyomen, T.; Hanaya, M.; Matsumoto, H. Silicon–Silicon π Single Bond. Nature Communications 2020, 11 (1). https://doi.org/10.1038/s41467-020-17815-z. 21. Ebner, F.; Greb, L. An Isolable, Crystalline Complex of Square-Planar Silicon(IV). Chem 2021, 7 (8), 2151–2159. https://doi.org/10.1016/j.chempr.2021.05.002. 22. Nukazawa, T.; Iwamoto, T. π-Conjugated Species with an Unsupported Si–Si π-Bond Obtained from Direct π-Extension. Chemical Communications 2021, 9692–9695. https://doi.org/10.1039/d1cc04332c. 23. Majhi, P. K.; Zimmer, M.; Morgenstern, B.; Scheschkewitz, D. Transition-Metal Complexes of Heavier Cyclopropenes: Non-DewarChatt-Duncanson Coordination and Facile Si═Ge Functionalization. Journal of the American Chemical Society 2021, 143 (24), 8981–8986. https://doi.org/10.1021/jacs.1c04419. 24. Coordination, C. D.; Si, F.; Functionalization, G.; Majhi, P. K.; Zimmer, M.; Morgenstern, B.; Scheschkewitz, D. Transition-Metal Complexes of Heavier Cyclopropenes : Non-Dewar −. 2021. https://doi.org/10.1021/jacs.1c04419. 25. Nukazawa, T.; Iwamoto, T. An Isolable Tetrasilicon Analogue of a Planar Bicyclo[1.1.0]Butane with π-Type Single-Bonding Character. Journal of the American Chemical Society 2020, 142 (22), 9920–9924. https://doi.org/10.1021/jacs.0c03874. 26. Yildiz, C. B.; Leszczyńska, K. I.; González-Gallardo, S.; Zimmer, M.; Azizoglu, A.; Biskup, T.; Kay, C. W. M.; Huch, V.; Rzepa, H. S.; Scheschkewitz, D. Equilibrium Formation of Stable All-Silicon Versions of 1,3-Cyclobutanediyl. Angewandte Chemie - International Edition 2020, 59 (35), 15087–15092. https://doi.org/10.1002/anie.202006283. 27. Foroutan-Nejad, C. Silicon–Silicon π Single Bond. Nature Communications 2021, 12 (1), 4037. https://doi.org/10.1038/s41467-020-17815-z. 28. Kyushin, S.; Kurosaki, Y.; Otsuka, K.; Imai, H.; Ishida, S.; Kyomen, T.; Hanaya, M.; Matsumoto, H. Silicon–Silicon π Single Bond. Nature Communications 2020, 11 (1), 1–7. https://doi.org/10.1038/s41467-020-17815-z. 29. Kishi, R.; Murata, Y.; Saito, M.; Morita, K.; Abe, M.; Nakano, M. Theoretical Study on Diradical Characters and Nonlinear Optical Properties of 1,3-Diradical Compounds. Journal of Physical Chemistry A 2014, 118 (45), 10837–10848. https://doi.org/10.1021/jp508657s. 30. Akisaka, R.; Ohga, Y.; Abe, M. Dynamic Solvent Effects in Radical– Radical Coupling Reactions: An Almost Bottleable Localised Singlet Diradical. Physical Chemistry Chemical Physics 2020, 22 (48), 27949–27954. https://doi.org/10.1039/d0cp05235c. 31. Asano, T. Kinetics in Highly Viscous Solutions: Dynamic Solvent Effects in “slow” Reactions. Pure and Applied Chemistry 1999, 71 (9), 1691–1704. https://doi.org/10.1351/pac199971091691. 32. Abe, M.; Furunaga, H.; Ma, D.; Gagliardi, L.; Bodwell, G. J. Stretch Effects Induced by Molecular Strain on Weakening σ-Bonds: Molecular Design of Long-Lived Diradicals (Biradicals). Journal of Organic Chemistry 2012, 77 (17), 7612–7619. https://doi.org/10.1021/jo3016105. 33. Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, Characterization, and Theory of [9]-, [12]-, and [18] Cycloparaphenylene: Carbon Nanohoop Structures. Journal of the American Chemical Society 2008, 130 (52), 17646–17647. https://doi.org/10.1021/ja807126u. 34. Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Selective Synthesis of [12]Cycloparaphenylene. Angewandte Chemie International Edition 2009, 48 (33), 6112–6116. https://doi.org/10.1002/anie.200902617. 35. Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8] Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. Angewandte Chemie International Edition 2010, 49 (4), 757–759. https://doi.org/10.1002/anie.200905659. 36. Miyazawa, Y.; Wang, Z.; Matsumoto, M.; Hatano, S.; Antol, I.; Kayahara, E.; Yamago, S.; Abe, M. 1,3-Diradicals Embedded in Curved Paraphenylene Units: Singlet versus Triplet State and In-Plane Aromaticity. Journal of the American Chemical Society 2021, 143 (19), 7426–7439. https://doi.org/10.1021/jacs.1c01329. 37. Abe, M.; Furunaga, H.; Ma, D.; Gagliardi, L.; Bodwell, G. J. Stretch Effects Induced by Molecular Strain on Weakening σ-Bonds: Molecular Design of Long-Lived Diradicals (Biradicals). Journal of Organic Chemistry 2012, 77 (17), 7612–7619. https://doi.org/10.1021/jo3016105. 38. Harada, Y.; Wang, Z.; Kumashiro, S.; Hatano, S.; Abe, M. Extremely Long Lived Localized Singlet Diradicals in a Macrocyclic Structure: A Case Study on the Stretch Effect. Chemistry - A European Journal 2018, 24 (55), 14808–14815. https://doi.org/10.1002/chem.201803076. 39. Wang, Z.; Akisaka, R.; Yabumoto, S.; Nakagawa, T.; Hatano, S.; Abe, M. Impact of the Macrocyclic Structure and Dynamic Solvent Effect on the Reactivity of a Localised Singlet Diradicaloid with π-Single Bonding Character. Chemical Science 2021, 12 (Scheme 1), 613–625. https://doi.org/10.1039/d0sc05311b. 40. Arduengo, A. J.; Bertrand, G. Carbenes Introduction. Chemical Reviews 2009, 109 (8), 3209–3210. https://doi.org/10.1021/cr900241h. 41. Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. Journal of the American Chemical Society 1991, 113 (1), 361–363. https://doi.org/10.1021/ja00001a054. 42. Igau, A.; Baceiredo, A.; Trinquier, G.; Bertrand, G. [Bis(Diisopropylamino)Phosphino]Trimethylsilylcarbene: A Stable Nucleophilic Carbene. Angewandte Chemie International Edition in English 1989, 28 (5), 621–622. https://doi.org/10.1002/anie.198906211. 43. Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chemical Reviews 2000, 100 (1), 39–91. https://doi.org/10.1021/cr940472u. 44. Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)- And (Aryl)-(Amino)Carbene Coinage Metal Complexes and Their Applications. Chemical Reviews 2020, 120 (9), 4141–4168. https://doi.org/10.1021/acs.chemrev.0c00043. 45. Yoshidomi, S.; Abe, M. 1,2-Diazacyclopentane-3,5-Diyl Diradicals: Electronic Structure and Reactivity. Journal of the American Chemical Society 2019, 141 (9), 3920–3933. https://doi.org/10.1021/jacs.8b12254. 46. Yoshidomi, S.; Mishima, M.; Seyama, S.; Abe, M.; Fujiwara, Y.; Ishibashi, T.-A. Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time-Resolved UV/Vis and IR Spectroscopy. Angewandte Chemie - International Edition 2017, 56 (11), 2984–2988. https://doi.org/10.1002/anie.201612329. 47. Abe, M.; Kanahara, K.; Kadowaki, N.; Tan, C.-J.; Tsai, H.-H. G. Unusually Long-Wavelength Emissions of Cyclopropanes: New Insight into C−C Bond Homolysis. Chemistry - A European Journal 2018, 24 (30), 7595–7600. https://doi.org/10.1002/chem.201800671.

RkJQdWJsaXNoZXIy NDU2MA==