AsiaChem | Chemistry in Japan | December 2021 Volume 2 Issue 1

www.asiachem.news December 2021 | 87 References 1. Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shahd, N.; Warda, K.R. (2019). The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 12, 463-491. 2. Alazemi, J.; Andrews, J. (2015). Automotive Hydrogen Fueling Stations: An International Review. Renewable Sustainable Energy Rev. 48, 483-499. 3. Baldi, F.; Wang, L.; Pérez-Fortes, M.; Maréchal, F. (2019). A Cogeneration System Based on Solid Oxide and Proton Exchange Membrane Fuel Cells with Hybrid Storage for Off-Grid Applications. Front. Energy Res. 6, 139. 4. Herraiz, L.; Lucquiaud, M.; Chalmers, H.; Gibbins, J. (2020). Sequential Combustion in Steam Methane Reformers for Hydrogen and Power Production with CCUS in Decarbonized Industrial Clusters. Front. Energy Res. 8, 180. 5. Boretti, A.; Banik, B.K. (2021). Advances in Hydrogen Production from Natural Gas Reforming. Adv. Energy Sustainability Res. 2, 2100097. 6. Tedsree, K.; Li, T.; Jones, S.; Chan, C.W.A.; Yu, K.M.K.; Bagot, P.A.J.; Marquis, E.M.; Smith, G.D.W.; Tsang, S.C.E. (2011). Hydrogen Production from Formic Acid Decomposition at Room Temperature Using a Ag–Pd Core–Shell Nanocatalyst. Nat. Nanotechnol. 6, 302-307. 7. Parent, A.R.; Nakazono, T.; Tsubonouchi, Y.; Taira, N.; Sakai, K. (2019). Mechanisms of Water Oxidation Using Ruthenium, Cobalt, Copper, and Iron Molecular Catalysts. Adv. Inorg. Chem. 74, 197-240. 8. Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. (2021). Photocatalytic Solar Hydrogen Production from Water on a 100-m2 Scale. Nature 598, 304307. 9. Iguchi, M.; Himeda, Y.; Manaka, Y.; Kawanami, H. (2016). Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid. ChemSusChem 9, 2749-2753. 10. Zhong, H.; Iguchi, M.; Song, F.-Z.; Chatterjee, M.; Ishizaka, T.; Nagao, I.; Xu, Q.; Kawanami, H. (2017). Automatic High-Pressure Hydrogen Generation from Formic Acid in the Presence of Nano-Pd Heterogeneous Catalysts at Mild Temperatures. Sustainable Energy Fuels 1, 1049-1055. 11. Fujishima, A.; Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37-38. 12. Kirch, M.; Lehn, J.-M.; Sauvage, J.-P. (1979). Hydrogen Generation by Visible Light Irradiation of Aqueous Solutions of Metal Complexes. An Approach to the Photochemical Conversion and Storage of Solar Energy. Helv. Chim. Acta 62, 1345-1384. 13. Esswein, A.J.; Nocera, D.G. (2007). Hydrogen Production by Molecular Photocatalysis. Chem. Rev. 107, 4022-4047. 14. Fukuzumi, S.; Yamada, Y.; Suenobu, T.; Ohkubo, K.; Kotani, H. (2011). Catalytic Mechanisms of Hydrogen Evolution with Homogeneous and Heterogeneous Catalysts. Energy Environ. Sci. 4, 2754-2766. 15. Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. (2011). Splitting Water with Cobalt. Angew. Chem. Int. Ed. 50, 7238-7266. 16. Dalle, K.E.; Warnan, J.; Leung, J.J.; Reuillard, B.; Karmel, I.S.; Reisner, E. (2019). Electro- and SolarDriven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 119, 2752-2875. 17. Sakai, K.; Ozawa, H. (2007). Homogeneous Catalysis of Platinum(II) Complexes in Photochemical Hydrogen Production from Water. Coord. Chem. Rev. 251, 2753-2766. 18. Sakai, K.; Matsumoto, K. (1988). Photochemical Reduction of Water to Hydrogen Catalyzed by Mixed-Valent Tetranuclear Platinum Complex. J. Coord. Chem. 18, 169-172. 19. Sakai, K.; Matsumoto, K. (1990). Homogeneous Catalysis of Platinum Blue Related Complexes in Photoreduction of Water into Hydrogen. J. Mol. Catal. 62, 1-14. 20. Sakai, K.; Kizaki, Y.; Tsubomura, T.; Matsumoto, K. (1993). Homogeneous Catalysis of Mixed-Valent Octanuclear Platinum Complexes in Photochemical Hydrogen Production from Water. J. Mol. Catal. 79, 141-152. 21. Tanaka, S.; Masaoka, S.; Yamauchi, K.; Annaka, M.; Sakai, K. (2010). Photochemical and Thermal Hydrogen Production from Water Catalyzed by Carboxylate-Bridged Dirhodium(II) Complexes. Dalton Trans. 39, 11218-11226. 22. Kawano, K.; Yamauchi, K.; Sakai, K. (2014). A Cobalt-NHC Complex as an Improved Catalyst for Photochemical Hydrogen Evolution from Water. Chem. Commun. 50, 9872-9875. 23. Sakai, K.; Tanaka, Y.; Tsuchiya, Y.; Hirata, K.; Tsubomura, T.; Iijima, S.; Bhattacharjee, A. (1998). New Structural Aspects of a-PyrrolidinonateBridged and a-Pyridonate-Bridged, Homo- and Mixed-Valence, Di- and Tetranuclear cisDiammineplatinum Complexes: Eight New Crystal Structures, Stoichiometric 1:1 Mixture of Pt(2.25+)4 and Pt(2.5+)4, New Quasi-One-Dimensional Halide-Bridged [Pt(2.5+)4-Cl···]∞ System, and Consideration for Solution Properties. J. Am. Chem. Soc. 120, 8366-8379. 24. Ozawa, H.; Haga, M.; Sakai, K. (2006). A PhotoHydrogen-Evolving Molecular Device Driving Visible-Light-Induced EDTA-Reduction of Water into Molecular Hydrogen. J. Am. Chem. Soc. 128, 4926-4927. 25. Yamauchi, K.; Masaoka, S.; Sakai, K. (2009). Evidence for Pt(II)-Based Molecular Catalysis in the Thermal Reduction of Water into Molecular Hydrogen. J. Am. Chem. Soc. 131, 8404-8406. 26. Ogawa, M.; Ajayakumar, G.; Masaoka, S.; Kraatz, H.-B.; Sakai, K. (2011). Platinum(II)- Based Hydrogen-Evolving Catalysts Linked to Multipendant Viologen Acceptors: Experimental and DFT Indications for Bimolecular Pathways. Chem. Eur. J. 17, 1148-1162. 27. Ozawa, H.; Sakai, K. (2011). Photo-HydrogenEvolving Molecular Devices Driving Visible-LightInduced Water Reduction into Molecular Hydrogen: Structure-Activity Relationship and Reaction Mechanism. Chem. Commun. 47, 2227-2242. 28. Rabbani, R.; Saeedi, S.; Nazimuddin, M.; Barbero, H.; Kyritsakas, N.; White, T.A.; Masson, E. (2021). Enhanced Photoreduction of Water Catalyzed by a Cucurbit[8]uril-Secured Platinum Dimer. Chem. Sci. 12, 15347-15352, and references therein. 29. Kobayashi, M.; Masaoka, S.; Sakai, K. (2011). Photoinduced Hydrogen Evolution from Water Based on a Z-Scheme Photosynthesis by a Simple Platinum(II) Terpyridine Derivative. Angew. Chem. Int. Ed. 51, 7431-7434. 30. Kitamoto, K.; Sakai, K. (2014). Pigment-AcceptorCatalyst Triads for Photochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 53, 4618-4622. 31. Suneesh, C.V.; Balan, B.; Ozawa, H.; Nakamura, Y.; Katayama, T.; Muramatsu, M.; Nagasawa, Y.; Miyasaka, H.; Sakai, K. (2014). Mechanistic Studies of Photoinduced Intramolecular and Intermolecular Electron Transfer Processes in RuPt-Centred Photo-Hydrogen-Evolving Molecular Devices. Phys. Chem. Chem. Phys. 16, 1607-1616. 32. Lin, S.; Kitamoto, K.; Ozawa, H.; Sakai, K. (2016). Improved Photocatalytic Hydrogen Evolution Driven by Chloro(terpyridine)platinum(II) Derivatives Tethered to a Single Pendant Viologen Acceptor. Dalton Trans. 45, 10643-10654. 33. Kitamoto, K.; Sakai, K. (2016). Photochemical H2 Evolution from Water Catalyzed by Dichloro(diphenylbipyridine)platinum(II) Derivative Tethered to Multiple Viologen Acceptors. Chem. Commun. 52, 1385-1388. 34. Ashford, D.L.; Gish, M.K.; Vannucci, A.K.; Brennaman, M.K.; Templeton, J.L.; Papanikolas, J.M.; Meyer, T.J. (2015). Molecular ChromophoreCatalyst Assemblies for Solar Fuel Applications. Chem. Rev. 115, 13006-13049. 35. Wang, M.; Yang, Y.; Shen, J.; Jiang, J.; Sun, L. (2017). Visible-Light-Absorbing Semiconductor/ Molecular Catalyst Hybrid Photoelectrodes for H2 or O2 Evolution: Recent Advances and Challenges. Sustainable Energy Fuels 1, 1641-1663. 36. Shan, B.; Brennaman, M.K.; Troian-Gautier, L.; Liu, Y.; Nayak, A.; Klug, C.M.; Li, T.T.; Bullock, R.M.; Meyer, T.J. (2019). A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell. J. Am. Chem. Soc. 141, 10390-10398. 37. Gong, L.; Zhang, P.; Liu, G.; Shan, Y.; Wang, M. (2021). A Silicon-Based Hybrid Photocathode Modified with an N5-Chelated Nickel Catalyst in a Noble-Metal-Free Biomimetic Photoelectrochemical Cell for Solar-Driven Unbiased Overall Water Splitting J. Mater. Chem. A 9, 12140-12151. 38. Ozawa, H.; Sugiura, T.; Kuroda, T.; Nozawa, K.; Arakawa, H. (2016). Highly Efficient Dye-Sensitized Solar Cell Based on a Ruthenium Sensitizer Bearing a Hexylthiophene Modified Terpyridine Ligand. J. Mater. Chem. A 4, 1762-1770. 39. Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Péchy, P.; Bach, U.; Schmidt-Mende, R.; Zakeeruddin, S.M.; Kay, A.; Nazeeruddina, M.K.; Grätzel, M. (2005). Control of Dark Current in Photoelectrochemical (TiO2/I −-I 3 −) and Dye-Sensitized Solar Cells. Chem. Commun. 2005, 4351-4353. 40. Brewster, T.P.; Konezny, S.J.; Sheehan, S.W.; Martini, L.A.; Schmuttenmaer, C.A.; Batista, V.S.; Crabtree, R.H. (2013). Hydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells. Inorg. Chem. 52, 6752−6764. 41. Shibayama, N.; Ozawa, H.; Abe, M.; Ooyama, Y.; Arakawa, H. (2014). A New Cosensitization Method Using the Lewis Acid Sites of a TiO2 Photoelectrode for Dye-Sensitized Solar Cells. Chem. Commun. 50, 6398-6401. 42. Takijiri, K.; Morita, K.; Nakazono, T.; Sakai, K.; Ozawa, H. (2017). Highly Stable Chemisorption of Dyes with Pyridyl Anchors Over TiO2: Application in Dye-Sensitized Photoelectrochemical Water Reduction in Aqueous Media. Chem. Commun. 53, 3042-3045. 43. Morita, K.; Takijiri, K.; Sakai, K.; Ozawa, H. (2017). A Platinum Porphyrin Modified TiO2 Electrode for Photoelectrochemical Hydrogen Production from Neutral Water Driven by the Conduction Band Edge Potential of TiO2. Dalton Trans. 46, 1518115185. 44. Morita, K.; Sakai, K.; Ozawa, H. (2019). A New Class of Molecular-Based Photoelectrochemical Cell for Solar Hydrogen Production Consisting of Two Mesoporous TiO2 Electrodes. ACS Appl. Energy Mater. 2, 987-992. 45. Boschloo, G.; Fitzmaurice, D. (2000). Electron Accumulation in Nanostructured TiO2 (Anatase) Electrodes. J. Electrochem. Soc. 147, 1117-1123. 46. Zhang, X.; Yamauchi, K.; Sakai, K. (2021). Earth-Abundant Photocatalytic CO2 Reduction by Multielectron Chargeable Cobalt Porphyrin Catalysts: High CO/H2 Selectivity in Water Based on Phase Mismatch in Frontier MO Association. ACS Catal. 11, 10436-10449. 47. Nakazono, T.; Sakai, K. (2016). Improving the Robustness of Cobalt Porphyrin Water Oxidation Catalysts by Chlorination of Aryl Groups. Dalton Trans. 45, 12649-12652. 48. Akamine, K.; Morita, K.; Sakai, K.; Ozawa, H. (2020). A Molecular-Based Water Electrolyzer Consisting of Two Mesoporous TiO2 Electrodes Modified with Metalloporphyrin Molecular Catalysts Showing a Quantitative Faradaic Efficiency. ACS Appl. Energy Mater. 3, 4860-4866.

RkJQdWJsaXNoZXIy NDU2MA==